AA sequence: pGlu-Phe-Thr-Asp-Val-Asp-Cys-Ser-Val-Ser-Lys-GIu-Cys-Trp-Ser-Val-Cys-Lys-Asp-Leu-Phe-Gly-Val-Asp-Arg-Gly-Lys-Cys-Met-Gly-Lys-Lys-Cys-Arg-Cys-Tyr-GIn-OH
Disulfide bridges: Cys7-Cys28, Cys13-Cys33, Cys17-Cys35
Length (aa): 37
Formula: C179H274N50O55S7
Molecular Weight: 4230.8 Da
Appearance: White lyophilized solid
Solubility: water and saline buffer
CAS number: 129203-60-7
Source: Synthetic
Purity rate: > 95 %
Iberiotoxin
Blocker of high conductance Ca2+-activated K+ channel
Iberiotoxin (IbTx) is a toxin that was originally isolated from Buthus tamulus scorpion venom. Iberiotoxin inhibits selectively the high conductance Ca2+-activated K+ channel (KCa1.1) at nanomolar concentrations (IC50 ~2 nM). This toxin does not affect other types of calcium-dependent or voltage-dependent K+ channels. Iberiotoxin is a valuable tool to study specifically Maxi-K channels.
Recently quoted in Br. J. Pharmacol.Contact us
Effects of the novel BK (KCa 1.1) channel opener GoSlo-SR-5-130 are dependent on the presence of BKβ subunits.
GoSlo-SR compounds are efficacious BK (KCa 1.1) channel openers, but little is known about their mechanism of action or effect on bladder contractility. We examined the effects of two closely related compounds on BK currents and bladder contractions. A combination of electrophysiology, molecular biology and synthetic chemistry was used to examine the effects of two novel channel agonists on BK channels from bladder smooth muscle cells and in HEK cells expressing BKα alone or in combination with either β1 or β4 subunits. GoSlo-SR-5-6 shifted the voltage required for half maximal activation (V1/2 ) of BK channels approximately -100 mV, irrespective of the presence of regulatory β subunits. The deaminated derivative, GoSlo-SR-5-130, also shifted the activation V1/2 in smooth muscle cells by approximately -100 mV; however, this was reduced by ∼80% in HEK cells expressing only BKα subunits. When β1 or β4 subunits were co-expressed with BKα, efficacy was restored. GoSlo-SR-5-130 caused a concentration-dependent reduction in spontaneous bladder contraction amplitude and this was abolished by iberiotoxin, consistent with an effect on BK channels. GoSlo-SR-5-130 required β1 or β4 subunits to mediate its full effects, whereas GoSlo-SR-5-6 worked equally well in the absence or presence of β subunits. GoSlo-SR-5-130 inhibited spontaneous bladder contractions by activating BK channels. The novel BK channel opener, GoSlo-SR-5-130, is approximately fivefold more efficacious on BK channels with regulatory β subunits and may be a useful scaffold in the development of drugs to treat diseases such as overactive bladder.
Large RJ., et al. (2015) Effects of the novel BK (KCa 1.1) channel opener GoSlo-SR-5-130 are dependent on the presence of BKβ subunits. BJP. PMID: 25598230
Purification and characterization of a unique, potent, peptidyl probe for the high conductance calcium-activated potassium channel from venom of the scorpion Buthus tamulus
An inhibitor of the high conductance, Ca2(+)-activated K+ channel (PK,Ca) has been purified to homogeneity from venom of the scorpion Buthus tamulus by a combination of ion exchange and reversed-phase chromatography. This peptide, which has been named iberiotoxin (IbTX), is one of two minor components of the crude venom which blocks PK,Ca. IbTX consists of a single 4.3-kDa polypeptide chain, as determined by polyacrylamide gel electrophoresis, analysis of amino acid composition, and Edman degradation. Its complete amino acid sequence has been defined. IbTX displays 68% sequence homology with charybdotoxin (ChTX), another scorpion-derived peptidyl inhibitor of PK,Ca, and, like this latter toxin, its amino terminus contains a pyroglutamic acid residue. However, IbTX possesses 4 more acidic and 1 less basic amino acid residue than does ChTX, making this toxin much less positively charged than the other peptide. In single channel recordings, IbTX reversibly blocks PK,Ca in excised membrane patches from bovine aortic smooth muscle. It acts exclusively at the outer face of the channel and functions with an IC50 of about 250 pM. Block of channel activity appears distinct from that of ChTX since IbTX decreases both the probability of channel opening as well as the channel mean open time. IbTX is a selective inhibitor of PK,Ca; it does not block other types of voltage-dependent ion channels, especially other types of K+ channels that are sensitive to inhibition by ChTX. IbTX is a partial inhibitor of 125I-ChTX binding in bovine aortic sarcolemmal membrane vesicles (Ki = 250 pM). The maximal extent of inhibition that occurs is modulated by K+, decreasing as K+ concentration is raised, but K+ does not affect the absolute inhibitory potency of IbTX. A Scatchard analysis indicates that IbTX functions as a noncompetitive inhibitor of ChTX binding. Taken together, these data suggest that IbTX interacts at a distinct site on the channel and modulates ChTX binding by an allosteric mechanism. Therefore, IbTX defines a new class of peptidyl inhibitor of PK,Ca with unique properties that make it useful for investigating the characteristics of this channel in target tissues.
Mechanism of iberiotoxin block of the large-conductance calcium-activated potassium channel from bovine aortic smooth muscle
The interaction of iberiotoxin (IbTX) with the large-conductance calcium-activated potassium (maxi-K) channel was examined by measuring single-channel currents from maxi-K channels incorporated into planar lipid bilayers. Addition of nanomolar concentrations of IbTX to the external side of the channel produced long nonconducting silent periods, which were interrupted by periods of normal channel activity. The distributions of durations of blocked and unblocked periods were both described by single exponentials. The mean duration of the unblocked periods decreased in proportion with the external concentration of IbTX, while the mean duration of the blocked periods was not affected. These results suggest that IbTX blocks the maxi-K channel through a simple bimolecular binding reaction where the silent periods represent times when a single toxin molecule is bound to the channel. In symmetric solutions of 150 mM KCl, with a membrane potential of 40 mV, the mean duration of the blocked periods produced by IbTX was 840 s, and the association rate was 1.3 x 10(6) M-1 s-1, yielding an equilibrium dissociation constant of about 1 nM. Raising the internal potassium concentration increased the dissociation rate constant of IbTX in a manner which was well described by a saturable binding function for potassium. External tetraethylammonium ion increased the average duration of the unblocked periods without affecting the blocked periods, suggesting that tetraethylammonium and IbTX compete for the same site near the conductance pathway of the channel. Increasing the external concentration of monovalent cations from 25 to 300 mM with either potassium or sodium decreased the rate of binding of IbTX to the channel by approximately 24-fold, with little effect on the rate of toxin dissociation.
Giangiacomo KM, et al. Mechanism of iberiotoxin block of the large-conductance calcium-activated potassium channel from bovine aortic smooth muscle. Biochemistry. PMID: 1379069
High-conductance calcium-activated potassium channels; structure, pharmacology, and function
High-conductance calcium-activated potassium (maxi-K) channels comprise a specialized family of K+ channels. They are unique in their dual requirement for depolarization and Ca2+ binding for transition to the open, or conducting, state. Ion conduction through maxi-K channels is blocked by a family of venom-derived peptides, such as charybdotoxin and iberiotoxin. These peptides have been used to study function and structure of maxi-K channels, to identify novel channel modulators, and to follow the purification of functional maxi-K channels from smooth muscle. The channel consists of two dissimilar subunits, alpha and beta. The alpha subunit is a member of the slo Ca(2+)-activated K+ channel gene family and forms the ion conduction pore. The beta subunit is a structurally unique, membrane-spanning protein that contributes to channel gating and pharmacology. Potent, selective maxi-K channel effectors (both agonists and blockers) of low molecular weight have been identified from natural product sources. These agents, together with peptidyl inhibitors and site-directed antibodies raised against alpha and beta subunit sequences, can be used to anatomically map maxi-K channel expression, and to study the physiologic role of maxi-K channels in various tissues. One goal of such investigations is to determine whether maxi-K channels represent novel therapeutic targets.
Kaczorowski GJ, et al. High-conductance calcium-activated potassium channels; structure, pharmacology, and function. J Bioenerg Biomembr. PMID: 8807400
Use of toxins to study potassium channels
Potassium channels comprise groups of diverse proteins which can be distinguished according to each member’s biophysical properties. Some types of K+ channels are blocked with high affinity by specific peptidyl toxins. Three toxins, charybdotoxin, iberiotoxin, and noxiustoxin, which display a high degree of homology in their primary amino acid sequences, have been purified to homogeneity from scorpion venom. While charybdotoxin and noxiustoxin are known to inhibit more than one class of channel (i.e., several Ca(2+)-activated and voltage-dependent K+ channels), iberiotoxin appears to be a selective blocker of the high-conductance, Ca(2+)-activated K+ channel that is present in muscle and neuroendocrine tissue. A distinct class of small-conductance Ca(2+)-activated K+ channel is blocked by two other toxins, apamin and leiurotoxin-1, that share no sequence homology with each other. A family of homologous toxins, the dendrotoxins, have been purified from venom of various related species of snakes. These toxins inhibit several inactivating voltage-dependent K+ channels. Although molecular biology approaches have been employed to identify and characterize several species of voltage-gated K+ channels, toxins directed against a particular channel can still be useful in defining the physiological role of that channel in a particular tissue. In addition, for those K+ channels which are not yet successfully probed by molecular biology techniques, toxins can be used as biochemical tools with which to purify the target protein of interest.
Garcia ML, et al. Use of toxins to study potassium channels. J Bioenerg Biomembr. PMID: 1917911
Mode of action of iberiotoxin, a potent blocker of the large conductance Ca(2+)-activated K+ channel
Iberiotoxin, a toxin purified from the scorpion Buthus tamulus is a 37 amino acid peptide having 68% homology with charybdotoxin. Charybdotoxin blocks large conductance Ca(2+)-activated K+ channels at nanomolar concentrations from the external side only (Miller, C., E. Moczydlowski, R. Latorre, and M. Phillips. 1985. Nature (Lond.). 313:316-318). Like charybdotoxin, iberiotoxin is only able to block the skeletal muscle membrane Ca(2+)-activated K+ channel incorporated into neutral-planar bilayers when applied to the external side. In the presence of iberiotoxin, channel activity is interrupted by quiescent periods that can last for several minutes. From single-channel records it was possible to determine that iberiotoxin binds to Ca(2+)-activate K+ channel in a bimolecular reaction. When the solution bathing the membrane are 300 mM K+ internal and 300 mM Na+ external the toxin second order association rate constant is 3.3 x 10(6) s-1 M-1 and the first order dissociation rate constant is 3.8 x 10(-3) s-1, yielding an apparent equilibrium dissociation constant of 1.16 nM. This constant is 10-fold lower than that of charybdotoxin, and the values for the rate constants showed above indicate that this is mainly due to the very low dissociation rate constant; mean blocked time approximately 5 min. The fact that tetraethylammonium competitively inhibits the iberiotoxin binding to the channel is a strong suggestion that this toxin binds to the channel external vestibule. Increasing the external K+ concentration makes the association rate constant to decrease with no effect on the dissociation reaction indicating that the surface charges located in the external channel vestibule play an important role in modulating toxin binding.
Candia S., et al. Mode of action of iberiotoxin, a potent blocker of the large conductance Ca(2+)-activated K+ channel. Biophys J. PMID: 1384740